A Unifying Construction of Orthonormal Bases for System Identi cation
نویسنده
چکیده
In this paper we develop a general and very simple construction for complete orthonormal bases for system identiication. This construction provides a unifying formulation of all known orthonormal bases since the common FIR and recently popular Laguerre and Kautz model structures are restrictive special cases of our construction as is another construction method based on balanced realisations of all pass functions. However, in contrast to these special cases, the basis vectors in our unifying construction can have nearly arbitrary magnitude frequency response according to the prior information the user wishes to inject into the problem. We also provide results characterising the completeness properties of our bases.
منابع مشابه
A Unifying Construction of Orthonormal Bases for System Identiication
| This paper develops a general and very simple construction for complete orthonormal bases for system identiica-tion. This construction provides a unifying formulation of many previously studied orthonormal bases since the common FIR and recently popular Laguerre and two-parameter Kautz model structures are restrictive special cases of the construction presented here. However, in contrast to t...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملOrthonormal Bases for System Identiication
In this paper we present a general and very simple construction for generating complete orthonormal bases for system identiication. This construction provides a unifying formulation of orthonormal bases since the common FIR and recently popular Laguerre and Kautz model structures are restrictive special cases of our construction. A distinguishing feature of our construction is that it can gener...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملMimo System Identi cation Using Orthonormal Basis Functions
There has recently been interest in the use of orthonor-mal bases for the purposes of SISO system identiication. Concurrently, but separately, there has also been vigorous work on estimation of MIMO systems by computa-tionally cheap and reliable schemes. These latter ideas have collectively become known as`4SID' methods. This paper is a contribution overlapping these two schools of thought by s...
متن کامل